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Abstract
We study some properties involving the strain energy for a nonlinear elasticity problem with geometric linearity in one-
dimensional and strain-limiting settings.
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Tóm tắt
Chúng tôi nghiên cứu một vài đặc tính của năng lượng biến dạng cho một bài toán độ đàn hồi phi tuyến với sự tuyến tính
hình học trong thiết lập một chiều và giới hạn biến dạng.

Từ khóa:

1. Introduction
We consider in this paper a displacement

problem in strain-limiting theory of nonlinear
elasticity as introduced in [1, 2]. In particular, we
study the properties of strain energy for a nonlin-
ear elasticity problem with geometric linearity in
one-dimensional and strain-limiting settings.

2. Formulation of the problem

2.1. Classical formulation
We consider herein a spatially 1D composite

rod formed by nonlinear elastic material, which

is computationally denoted by Ω. Assume that Ω
is a bounded, connected, open, Lipschitz domain
of R. The boundary of the setΩ is represented by
∂Ω, which is Lipschitz continuous, consisting of
two parts ∂ΩT and ∂ΩD .

For simplicity, the rod is assumed to be at a
static state after the action of body forces (along
the rod) f :Ω→R and traction forces G : ∂ΩT →
R. The displacement u : Ω → R is considered
on ∂ΩD . We are investigating the strain-limiting
model of the following form (as in [1]):

E = σ

1+β|σ| . (1)
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That is,

σ= E

1−β|E | . (2)

In Eqs. (1) and (2), β is the strain-limiting param-
eter (which will be discussed in the next para-
graph), σ stands for the Cauchy stress σ :Ω→R,
and E denotes the classical linearized strain ten-
sor (which implies geometric linearity)

E := 1

2
(∇u +∇uT) . (3)

In one-dimensional setting,

E := u′ , (4)

saying, the spatial derivative of u. Therefore, by
(2), we obtain

σ= u′

1−β|u′| . (5)

We derive from (1) that

|E | = |σ|
1+β|σ| <

1

β
. (6)

This shows that
1

β
is the upper-bound on |E |

and choosing sufficiently large β produces small
upper-bound on the limiting-strain, as desired.
Nevertheless, we refrain from too large β. If β→
∞ then |E | < 1

β
→ 0, which is not an expected be-

havior. In this paper, β is taken so that the strong
ellipticity condition [1] is attained, to prevent bi-
furcations arising in numerical simulations.

2.2. Function spaces
Let V := H 1

0 (Ω) is our needed space. Nev-
ertheless, the methods in this paper can be ex-
tended to more general space H p

0 (Ω), where 2 ≤
p <∞. The space W 1,2

0 (Ω) is of interests because
it can help handle displacements that vanish on
the boundary ∂Ω of Ω.

Let H−1(Ω) be the dual space, which is the
space of continuous linear functionals on H 1

0 (Ω),
and the value of a functional b ∈ H−1(Ω) at
a point v ∈ H 1

0 (Ω) is denoted by 〈b, v〉. The
Sobolev norm ‖ ·‖H 1

0 (Ω) is of the following form:

‖v‖H 1
0 (Ω) =

(
‖v‖2

L2(Ω) +‖∇v‖2
L2(Ω)

) 1
2

.

The dual norm to ‖ · ‖H 1
0 (Ω) is represented by

‖ ·‖H−1(Ω).
We define

f ∈ H 1
∗(Ω) =

{
g ∈ H 1(Ω)

∣∣∣∣ˆ
Ω

g d x = 0

}
.

The following problem is of our interest: Find
u ∈ H 1(Ω) and σ ∈ L1(Ω) ([3]) such that

−div(σ) = f in Ω ,

σ= u′

1−β|u′| in Ω ,

u = 0 on ∂ΩD ,

σ=G on ∂ΩT .

(7)

Here, we assume that ∂ΩT =;. Using (7), we
rewrite the considered formulation in the form of
displacement problem: Find u ∈ H 1(Ω) such that

−div
(

u′

1−β |u′|
)
= f in Ω , (8)

u = 0 on ∂Ω . (9)

Let

a(x,u′) = u′

1−β |u′| , (10)

in which u(x) ∈W 1,2
0 (Ω).

3. Existence and uniqueness

In [4], the existence and uniqueness of solu-
tion to (8)-(9) is proved and thanks to the follow-
ing Lemma ([5, 6, 4]).

Lemma 3.1. Let

Z :=
{
ζ ∈ L∞(Ω)

∣∣∣ 0 ≤ |ζ| < 1

β

}
. (11)

For any ξ ∈Z , we consider the mapping

ξ ∈Z 7→ F (ξ) := ξ

1−β|ξ| ∈R .

Then, for each ξ1,ξ2 ∈Z , we get

|F (ξ1)−F (ξ2)| ≤ |ξ1 −ξ2|
(1−β(|ξ1|+ |ξ2|))2

, (12)

(F (ξ1)−F (ξ2))(ξ1 −ξ2) ≥ |ξ1 −ξ2|2 . (13)

In our case of 1D, the solution u can be found
directly from (8)-(9).
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4. Hyperelasticity

The considered model (1) is compatible with
the laws of thermodynamics [7, 8], which means
that the class of materials are non-dissipative and
elastic. Moreover, this class of materials is hyper-
elastic [1, 9]. Specifically, the relation (2) can be
derived from the strain energy function

ĥ(E) = h̃(|E |) , (14)

with
h̃(r ) :=

ˆ
r

1−βr
dr . (15)

It is simple to verify that

σ= ∂E ĥ(E) = ∂E h̃(|E |) .

In our case, the strain energy function ob-
tained in [1, 9] is of the form

h̃(r ) :=− 1

β2
(ln(1−βr )+βr ) . (16)

The complementary energy function is de-
fined through Legendre transformation of the
strain energy:

k̂(σ) :=−ĥ(E)+σ ·E = k̃(|σ|) . (17)

In our setting, (17) has the form

k̃(r ) := 1

β2
(βr − ln(1+βr )) . (18)

5. Some properties of strain energy

Thanks to [9], we consider the expression

J (v) =
ˆ
Ω

h̃(|Dv |)d x −L(v)

=
ˆ
Ω

(
− 1

β2

)
[ln(1−β|Dv |)+β|Dv |]d x −L(v) ,

(19)

where
L(v) =

ˆ
Ω

f v d x ,

V := H 1
0 (Ω) = {

v ∈ H 1(Ω)
∣∣ trv = 0 on ∂Ω

}
.

The following properties of J (v) readily hold.

Lemma 5.1. J (v) is proper, strictly convex, and
continuous on V .

Proof. We prove, for instance, the strict convex-
ity. Regarding the last two summands in (19), the
convexity of β|Dv | and L(v) comes from their
linearity on V .

For the first summand of (19), the strict con-
vexity follows from the fact that the increasing

and strictly convex function k1(y) =
(
− 1

β2

)
ln(1−

βy)

(
∀ 0 ≤ y < 1

β

)
combining with the convex

function k2(v) = |Dv | produces a strictly convex
function. More specifically, the first and second
derivatives of k1(y) with respect to y are both
positive:

(k1(y))′ =
(
− 1

β2
ln(1−βy)

)′
= 1

β(1−βy)
> 0

(increasing of k1),

(k1(y))′′ =
(

1

β(1−βy)

)′
= 1

(1−βy)2
> 0

(strict convexity of k1).
Now, we want to show that for all t ∈ [0,1]

and v, w ∈V ,

(k1 ◦k2)(t v + (1− t )w)

< t (k1 ◦k2)(v)+ (1− t )(k1 ◦k2)(w) .

It is clear that

(k1 ◦k2)(t v + (1− t )w)

= k1(k2(t v + (1− t )w))

≤ k1(tk2(v)+ (1− t )k2(w))

< tk1(k2(v))+ (1− t )k1(k2(w))

= t (k1 ◦k2)(v)+ (1− t )(k1 ◦k2)(w) ,

and we are done.

Remark 5.2. As a consequence of Lemma 5.1,
for the minimization problem

J (u) = inf
v∈V

J (v) ,

it is well-known (see [10, 11], for instance) that
the unknown displacement vector field u : Ω→
R3 is the unique solution.
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With the given displacement problem in
three-dimensional strain-limiting theory of elas-
ticity, this minimization problem, instead of be-
ing called principle of minimum potential energy,
will be modernly referred to as the displacement
formulation [12].

6. Conclusions

In this paper, we investigate the properties
of strain energy for a nonlinear elasticity prob-
lem with geometric linearity in one-dimensional
and strain-limiting settings. The results here still
hold in higher dimensions (for example, three).
An open question is extending this study to the
(complementary) stress energy.
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