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Abstract

The traditional Markowitz approach to portfolio
optimization assumes that we know the means,
variances, and covariances of the return rates of
all the financial instruments. In some practical
situations, however, we do not have enough in-
formation to determine the variances and covari-
ances, we only know the means. To provide a
reasonable portfolio allocation for such cases, re-
searchers proposed a heuristic maximum entropy
approach. In this paper, we provide an economic
justification for this heuristic idea.
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1 FORMULATION OF THE
PROBLEM

Portfolio optimization: general
problem. What is the best way to
invest money? Usually, there are sev-
eral possible financial instruments; let
us denote the number of available finan-
cial instruments by n. The questions
is then: what portion wi of the over-
all money amount should we allocate to
each instrument i? Of course, these por-
tions must be non-negative and add up
to one:

n∑
i=1

wi = 1. (1)

The corresponding tuple w =
(w1, . . . , wn) is known as an investment
portfolio, or simply portfolio, for short.
Case of complete knowledge:
Markowitz solution. If we place
money in a bank, we get a guaranteed
interest, with a given rate of return r.
However, for most other financial in-
struments i, the rate of return ri is not
fixed, it changes (e.g., fluctuates) year
after year. For each values of instru-
ment returns, the corresponding portfo-

lio return r is equal to r =
n∑
i=1

wi · ri.

In many practical situations, we
know, from experience, the probabilis-
tic distributions of the corresponding
rates of return. Based on this past
experience, for each instrument i, we
can estimate the expected rate of return
µi = E[ri] and the corresponding stan-
dard deviation σi =

√
E[(ri − µi)2]. We

can also estimate, for each pair of finan-
cial instruments i and j, the covariance

cik
def
= E[(ri − µi) · (rj − µj)].

By using this information, for each
possible portfolio w = (w1, . . . , wn), we
can compute the expected return

µ = E[r] =
n∑
i=1

wi · µi (2)

and the corresponding variance

σ2 =
n∑
i=1

w2
i ·σ2

i +
n∑
i=1

n∑
j=1

cij ·wi ·wj. (3)

The larger the expected rate of re-
turn µ we want, the largest the risk that
we have to take, and thus, the larger
the variance. It is therefore reasonable,
given the desired expected rate of re-
turn µ, to find the portfolio that mini-
mizes the variance, i.e., that minimizes
the expression (3) under the constraints
(1) and (2).

This problem was first considered
by the future Nobelist Markowitz,
who proposed an explicit solution to
this problem; see, e.g.,[8]. Namely, the
Lagrange multiplier method enables
to reduce this constraint optimiza-
tion problem to the following uncon-
strained optimization problem: mini-
mize the expression

n∑
i=1

w2
i · σ2

i +
n∑
i=1

n∑
j=1

cij · wi · wj

+λ1 ·

(
n∑
i=1

wi − 1

)

+λ2 ·

(
n∑
i=1

wi · µi − µ

)
(4)

where λ1 and λ2 are Lagrange multipli-
ers that need to be determined from the
conditions (1) and (2).
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Differentiating the expression (4) by
the unknowns wi, we get the following
system of linear equations:

2σi ·wi + 2
∑
j 6=i

cij ·wj + λ1 + λ2 · µi = 0.

(5)
Thus,

wi = λ1 · w(1)
i + λ2 · w(2)

i , (6)

where w
(j)
i are solutions to the following

systems of linear equations

2σi · wi + 2
∑
j 6=i

cij · wj = −1 (7)

and

2σi · wi + 2
∑
j 6=i

cij · wj = −µi. (8)

Substituting the expression (6) into
the equations (1) and (2), we get a sys-
tem two linear equations for two un-
knowns λ1 and λ2. From this system,
we can easily find the coefficients λi and
thus, the desired portfolio (6).
Case of complete information:
modifications of Markowitz solu-
tion. Some researchers argue that vari-
ance may be not the best way to de-
scribe the intuitive notion of risk. In-
stead, they propose to use other statisti-
cal characteristics, e.g., the quantile qα
corresponding to a certain small prob-
ability α – i.e., a value for which the
probability that the returns are very low
(r ≤ qα) is equal to α.

Instead of the original Markowitz
problem, we thus have a problem of
maximizing qα – or another character-
istic – under the given expected return
µ. Computationally, the resulting con-
straint optimization problems are no

longer quadratic and thus, more com-
plex to solve, but they are still well for-
mulated and thus, solvable.
Case of partial information: for-
mulation of the general problem. In
many practical situations, we only have
partial information about the probabil-
ities of different rates of return ri.

For example, in some cases, we
know the expected returns µi, but we
do not have any information about the
standard deviations and covariances.
What portfolio should we select in such
situations?
Maximum Entropy approach: re-
minder. Situations in which we
only have partial information about the
probabilities – and thus, several differ-
ent probability distributions are consis-
tent with the available information –
such situations are ubiquitous.

Usually, some of the consistent dis-
tributions are more precise, some are
more uncertain. We do not want to pre-
tend that we know more than we actu-
ally do, so in such situations of uncer-
tainty, a natural idea is to select a dis-
tribution which has the largest possible
degree of uncertainty. A reasonable way
to describe the uncertainty of a proba-
bility distribution with the probability
density ρ(x) is by its entropy

S = −
�
ρ(x) · ln(ρ(x)) dx. (9)

So, we select the distribution whose
entropy is the largest; see, e.g., [5].

In many cases, this Maximum En-
tropy approach makes perfect sense. For
example, if the only information that we
have about a probability distribution is
that it is located on an interval [x, x],
then out of all possible distributions, the
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Maximum Entropy approach selects the
uniform distribution ρ(x) = const on
this interval. This makes perfect sense –
if we do not have any reason to believe
that one of the values from the inter-
val is more probable than other values,
then it makes sense to assume that all
the values from this interval are equally
probable, which is exactly ρ(x) = const.

In situations when we know
marginal distributions of each of the
variables, but we do not have any infor-
mation about the dependence between
these variables, the Maximum Entropy
approach concludes that these variables
are independent. This also makes per-
fect sense: if we have no reason to be-
lieve that the variables are positively or
negatively correlated, it makes sense to
assume that they are not correlated at
all.

If all we know is the mean and the
standard deviation, then the Maximum
Entropy approach leads to the normal
(Gaussian) distribution – which is in
good accordance with the fact that such
distributions are indeed ubiquitous.

So, in situations when we only have
a partial information about the prob-
abilities of different return values, it
makes sense to select, out of all possible
probability distributions, the one with
the largest entropy, and then use this
selected distribution to find the corre-
sponding portfolio.
Problem: Maximum Entropy ap-
proach is not applicable to the case
when only know µi. In many prac-
tical situations, the Maximum Entropy
approach leads to reasonable results.
However, it is not applicable to the sit-
uation when we only know the expected

rates of return µi.
This impossibility can be illustrated

already on the case when we have a sin-
gle financial instrument. Its rate of re-
turn r1 can take any value, positive or
negative, the only information that we
have about the corresponding probabil-
ity distribution ρ(x) is that

µ1 =

�
x · ρ(x) dx (10)

and, of course, that ρ(x) is a probability
distribution, i.e., that�

ρ(x) dx = 1. (11)

The constraint optimization prob-
lem of maximizing the entropy (9) un-
der the constraints (10) and (11) can be
reduced to the following unconstrained
optimization problem: maximize

−
�
ρ(x) · ln(ρ(x))dx

+λ1 ·
(�

x · ρ(x)dx− µ1

)
+λ2 ·

(�
ρ(x)dx− 1

)
, (12)

Differentiating the expression (12)
with respect to the unknown ρ(x) and
equating the derivative to 0, we get

− ln(ρ(x))− 1 + λ1 · x+ λ2 = 0,

hence

ln(ρ(x)) = (λ2 − 1) + λ1 · x

and ρ(x) = C · exp(λ1 · x), where C =
exp(λ2−1). The problem is that the in-
tegral of this exponential function over
the real line is always infinite, we can-
not get it to be equal to 1 – which means
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that it is not possible to attain the max-
imum, entropy can be as large as we
want.

So how do we select a portfolio in
such a situation?
A heuristic idea. In the situation
in which we only know the means µi,
we cannot use the Maximum Entropy
approach to find the most appropriate
probability distribution. However, here,
the portions wi – since they add up to
1 – can also be viewed as kind of proba-
bilities. It therefore makes sense to look
for a portfolio for which the correspond-
ing entropy

−
n∑
i=1

wi · ln(wi) (13)

attains the largest possible value under
the constraints (1) and (2); see, e.g.,
[1, 3, 9, 10, 11, 12].

This heuristic idea sometimes leads
to reasonable results. Here, entropy can
be viewed as a measure of diversity.
Thus, the idea to bring more diversity
to one’s portfolio makes perfect sense.
However, there is a problem.
Remaining problem. The problem
is that while the weights wi do add
up to one, they are not probabilities. So,
in contrast to the probabilistic case, where
the Maximum Entropy approach has
many justifications, for the weights,
there does not seem to be any rea-
sonable justification. It is therefore de-
sirable to either justify this heuristic
method - or provide a justified alterna-
tive.
What we do in this paper. In this
paper, we provide a justification for the
Maximum Entropy approach. We also
show that a similar idea can be applied

to a slightly more complex – and more
realistic – case, when we only know
bounds µ

i
and µi on the values µi.

2 CASE WHEN WE ONLY
KNOW THE EXPECTED
RATES OF RETURN µi: ECO-
NOMIC JUSTIFICATION OF
THE MAXIMUM ENTROPY
APPROACH

General definition. We want, given n
expected return rates µ1, . . . , µn, to gen-
erate the weights w1 = fn1(µ1, . . . , µn),
. . . , wn = fnn(µ1, . . . , µn) depending on
µi for which the sum of the weights is
equal to 1.
Definition 1. By a portfolio allocation
scheme, we mean a family of functions
fni(µ1, . . . , µn) 6= 0 of non-negative
variables µi, where n is arbitrary inte-
ger larger than 1, and i = 1, 2, . . . , n,
such that for all n and for all µi ≥ 0,
we have

n∑
i=1

fni(µ1, . . . , µn) = 1.

Symmetry. Of course, the portfolio al-
location should not depend on the order
in which we list the instrument.
Definition 2. We say that a portfo-
lio allocation scheme is symmetric if for
each n, for each µ1, . . . , µn, for each
i ≤ n, and for each permutation π :
{1, . . . , n} → {1, . . . , n}, we have

fni(µ1, . . . , µn) = fn,π(i)(µπ(1), . . . , µπ(n)).

Pairwise comparison. If we only have
two financial instruments (n = 2) with
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expected rates µ1 and µ2, then we as-
sign weights w1 and w2 = 1 − w1 de-
pending on the known values µ1 and µ2:
w1 = f21(µ1, µ2) and w2 = f22(µ1, µ2).

In the general case, if we have n in-
struments including these two, then the
amount fn1(µ1, . . . , µn)+fn2(µ1, . . . , µn)
is allocated for these two instruments.
Once this amount is decided on, we
should divide it optimally between these
two instruments. The optimal division
means that the first instrument gets
the portion f21(w1, w2) of this overall
amount, so we must have

fn1(µ1, µ2, . . .) = f21(µ1, µ2)

·(fn1(µ1, . . . , µn) + fn2(µ1, . . . , µn)),
(14)

Thus, we arrive at the following def-
inition.
Definition 3. We say that a portfo-
lio allocation scheme is consistent if for
every n > 2 and for all i 6= j, we have

fni(µ1, . . . , µn) = f21(µi, µj)

·(fni(µ1, . . . , µn) + fnj(µ1, . . . , µn)),
(15)

Proposition 1. A portfolio alloca-
tion scheme is symmetric and consis-
tent if and only if there exists a function
f(µ) ≥ 0 for which

fni(µ1, . . . , µn) =
f(µi)
n∑
j=1

f(µj)
. (16)

Proof. It is easy to check that the for-
mula (16) describes a symmetric and
consistent portfolio allocation scheme.
So, to complete the proof, it is sufficient

to show that every symmetric and con-
sistent portfolio allocation scheme has
the form (16).

Indeed, let us assume that the port-
folio allocation scheme satisfies the for-
mula (15). If we write the formulas (15)
for i and j and then divide the i-formula
by the j-formula, we get the following
equality:

fni(µ1, . . . , µn)

fnj(µ1, . . . , µn)
=

Φ(µi, µj)
def
=
f21(µi, µj)

f21(µj, µi)
. (17)

Due to symmetry, f22(µi, µj) =
f21(µj, µi), so we have

Φ(µi, µj) =
f21(µi, µj)

f21(µj, µi)
(18)

and

Φ(µj, µi) =
f21(µj, µi)

f21(µi, µj)
, (19)

thus

Φ(µj, µi) =
1

Φ(µi, µj)
. (20)

Now, for each i, j, and k, we have

fni(µ1, . . . , µn)

fnj(µ1, . . . , µn)
=

fni(µ1, . . . , µn)

fnk(µ1, . . . , µn)
· fnk(µ1, . . . , µn)

fnj(µ1, . . . , µn)
,

thus

Φ(µi, µj) = Φ(µi, µk) · Φ(µk, µj).

In particular, for µk = 1, we have

Φ(µi, µj) = Φ(µi, 1) · Φ(1, µj). (21)

Due to (20), this means that

Φ(µi, µj) =
Φ(µi, 1)

Φ(µj, 1)
, (22)
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i.e.,

Φ(µi, µj) =
f(µi)

f(µj)
, (23)

where we denoted f(µ)
def
= F (µ, 1). Sub-

stituting this expression (23) into the
formula (17) and taking j = 1, we con-
clude that

fni(µ1, . . . , µn)

fn1(µ1, . . . , µn)
=
f(µi)

f(µ1)
, (24)

i.e.,

fni(µ1, . . . , µn) = C · f(µi), (25)

where we denoted

C
def
=
fn1(µ1, . . . , µn)

f(µ1)
.

From the condition that the val-
ues fnj corresponding to j = 1, . . . , n
should add up to 1, we conclude that

C ·
n∑
j=1

f(µj) = 1, hence

C =
1∑

j=1

f(µj)

and thus, the expression (25) takes ex-
actly the desired form.

The proposition is proven.
Monotonicity. If all we know about
each financial instruments is their ex-
pected rate of return, then it is reason-
able to assume that the larger the ex-
pected rate of return, the better the in-
strument. It is therefore reasonable to
require that the larger the rate of re-
turn, the larger portion of the original
amount should be invested in this in-
strument.
Definition 4. We say that a portfo-
lio allocation scheme is monotonic if for

each n and each µi, if µi ≥ µj, then
fni(µ1, . . . , µn) ≥ fnj(µ1, . . . , µn).

One can easily check that a sym-
metric and consistent portfolio alloca-
tion scheme is monotonic if and only if
the corresponding function f(µ) is non-
decreasing.
Shift-invariance. Suppose that, in ad-
dition to the return from the invest-
ment, a person also get some additional
fixed income, which when divided by
the amount of money to be invested,
translates into the rate r0. This situ-
ation can be described in two different
ways:

� We can consider r0 separately
from the investment; in this case,
we should allocate, to each fi-
nancial instrument i, the portion
fi(µ1, . . . , µn);

� Alternatively, we can combine
both incomes into one and say
that for each instrument i, we will
get the expected rate of return
µi + r0; in this case, to each fi-
nancial instrument i, we allocate
a portion fi(µ1 + r0, . . . , µn + r0).

Clearly, this is the same situations
described in two different ways, so the
portfolio allocation should not depend
on how exactly we represent the same
situation. Thus, we arrive at the fol-
lowing definition.
Definition 5. We say that a portfo-
lio allocation scheme is shift-invariant
if for all n, for all µ1, . . . , µn, for all i,
and for all r0, we have

fni(µ1, . . . , µn) = fni(µ1+r0, . . . , µn+r0).
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Proposition 2. For each portfolio al-
location scheme, the following two con-
ditions are equivalent to each other:

� The scheme is symmetric, con-
sistent, monotonic, and shift-
invariant, and

� The scheme has the form

fni(µ1, . . . , µn) =
exp(β · µi)
n∑
j=1

exp(β · µj)
.

(26)
for some β ≥ 0.

Proof. It is clear that the scheme (26)
has all the desired properties. Vice
versa, let us assume that a scheme has
all the desired properties. Then, from
shift-invariance, for each i and j, we get

fni(µ1, . . . , µn)

fnj(µ1, . . . , µn)
=

fni(µ1 + r0, . . . , µn + r0)

fnj(µ1 + r0, . . . , µn + r0)
, (27)

Substituting the formula (16), we con-
clude that

f(µi)

f(µj)
=
f(µi + r0)

f(µj + r0)
, (28)

which implies that

f(µi + r0)

f(µi)
=
f(µj + r0)

f(µj)
. (29)

The left-hand side of this equality
does not depend on µj, the right-hand
side does not depend on µi. Thus, the
ratio depends only on r0. Let us de-
note this ratio by R(r0). Then, we get
f(µ+ r0) = R(r0) · f(µ).

It is known (see, e.g., [2]) that ev-
ery non-decreasing solution to this func-
tional equation has the form

const · exp(β · µ)

for some β ≥ 0. The proposition is
proven.
Main result. Now, we are ready to
formulate our main result – an eco-
nomic justification of the above heuris-
tic method.
Proposition 3. Let µ be the desired ex-
pected return rate, and assume that we
only consider allocation schemes pro-
viding this expected return rate, i.e.,
schemes for which

n∑
i=1

µi ·wi =
n∑
i=1

µi · fni(µ1, . . . , µn) = µ.

(30)
Then, the following two conditions on a
portfolio allocation schemes are equiva-
lent to each other:

� The scheme is symmetric, con-
sistent, monotonic, and shift-
invariant, and

� The scheme has the largest possi-

ble entropy −
n∑
i=1

wi · ln(wi) among

all the schemes with the given ex-
pected return rate.

Proof. Maximizing entropy under the
constraints

∑
wi ·µi = µ0 and

∑
wi = 1

is, due to Lagrange multiplier method,
equivalent to maximizing the expression

−
n∑
i=1

wi·ln(wi)+λ1·

(
n∑
i=1

wi · µi − µ

)
+

+λ2 ·

(
n∑
i=1

wi − 1

)
. (31)
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Differentiating this expression by wi
and equating the derivative to 0, we
conclude that

− ln(wi)− 1 + λ1 · µ1 + λ2 = 0, (32)

i.e., that

wi = const · exp(λ1 · µi).

This is exactly the expression (26)
which, as we have proved in Proposi-
tion 2, is indeed equivalent to symmetry,
consistency, monotonicity, and shift-
invariance. The proposition is proven.
Discussion. What we proved, in effect,
is that maximizing diversity is a great
idea, be it diversity when distributing
money between financial instrument, or
– when the state invests in its citizens
– when we allocate the budget between
cities, between districts, between ethic
groups, or when a company is investing
in its future by hiring people of different
backgrounds.

3 CASE WHEN WE ONLY
KNOW THE INTERVALS
[µ

i
, µi] CONTAINING THE

ACTUAL (UNKNOWN) EX-
PECTED RETURN RATES

Description of the case. Let us now
consider an even more realistic case,
when we take into account that the ex-
pected rates of return µi are only ap-
proximately known. To be precise, we
assume that for each i, we only know
the interval [µ

i
, µi] containing the ac-

tual (unknown) expected return rates
µi. How should we then distribute the
investments?
Definition 6. By an interval-
based portfolio allocation scheme,

we mean a family of functions
fni(µ1

, µ1 . . . , µn, µn) 6= 0 of non-
negative variables µi, where n is an
arbitrary integer larger than 1, and
i = 1, 2, . . . , n, such that for all n
and for all 0 ≤ µ

i
≤ µi, we have

n∑
i=1

fni(µ1
, µ1, . . . , µn, µn) = 1.

Definition 7. We say that an interval-
based portfolio allocation scheme is
symmetric if for each n, for each
µ
1
, µ1, . . . , µn, µn, for each i ≤ n, and

for each permutation π : {1, . . . , n} →
{1, . . . , n}, we have

fni(µ1
, µ1 . . . , µn, µn) =

fn,π(i)(µπ(1), µπ(1), . . . . . . , µπ(n), µπ(n)).

Definition 8. We say that an interval-
based portfolio allocation scheme is con-
sistent if for every n > 2 and for all
i 6= j, we have

fni(µ1
, µ1, . . . , µn, µn) =

f21(µi, µi, µj, µj)·(fni(µ1
, µ1, . . . , µn, µn)

+fnj(µ1
, µ1, . . . , µn, µn)).

Proposition 4. An interval-based port-
folio allocation scheme is symmetric
and consistent if and only if there ex-
ists a function f(µ, µ) ≥ 0 for which

fni(µ1
, µ1, . . . , µn, µn) =

f(µ
i
, µi)

n∑
j=1

f(µ
j
, µj)

.

Proof is similar to the proof of Propo-
sition 1.
Definition 9. We say that an interval-
based portfolio allocation scheme is
monotonic if for each n and each µ

i
and

µi, if µi ≥ µ
j
and µi ≥ µj, then
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fni(µ1
, µ1, . . . , µn

, µn) ≥ fnj(µ1
, µ1, . . . , µn

, µn).

One can easily check that a symmet-
ric and consistent portfolio allocation
scheme is monotonic if and only if the
corresponding function f(µ, µ) is non-
decreasing in both variables.
Additivity. Let us assume that in year
1, we have instruments with bounds µ

i
and µi, and in year 2, we have a different
set of instruments, with bounds µ′

j
and

µ′
j. Then, we can view this situation in

two different ways:

� We can view it as two differ-
ent portfolio allocations, with al-
locations wi in the first year and
independently, allocations w′

j in
the second year; since these two
years are treated independently,
the portion of money that goes
into the i-th instrument in the
first year and in the j-th instru-
ment in the second year can be
simply computed as a product
wi · w′

j of the corresponding por-
tions;

� Alternatively, we can consider
portfolio allocation as a 2-year
problem, with n · m possible op-
tions, so that for each option (i, j),
the expected return is the sum
µi + µ′

j of the corresponding ex-
pected returns; since µi is in the
interval [µ

i
, µi] and µ′

j is in the in-
terval [µ′

j
, µ′

j], the sum µi+µ′
j can

take all the values from µ
i
+ µ′

i
to

µi + µ′
j.

It is reasonable to require that the
resulting portfolio allocation not de-

pend on how exactly we represent this
situation.
Definition 10. An interval-based port-
folio allocation scheme is called additive
if for every n and m, for all values µ

i
,

µi, µ
′
i
, and µ′

i, and for every i and j, we
have

fn·m,i,j(µ1
+ µ′

1
, µ1 + µ′1, µ1

+ µ′
2
, µ1 + µ′2, . . .

, µ
n
+ µ′

m
, µn + µ′m) =

fni(µ1
, µ1, . . . , µn

, µn)·fmj(µ
′
1
, µ′1, . . . , µ

′
n
, µ′n).

Proposition 5. A symmetric and con-
sistent interval-based portfolio alloca-
tion scheme is additive if and only if
the corresponding function f(u, u) has
the form

f(u, u) = exp(β · u+ β · u)

for some β ≥ 0 and β ≥ 0.

Proof. In terms of the function f(u, u),
additivity takes the form

f(u+ u′, u+ u′) = C · f(u, u) · f(u′, u′).

For F
def
= ln(f), this equation has the

form

F (u+u′, u+u′) = c+F (u, u)+F (u′, u′),

where c
def
= ln(C). For G

def
= F + c, we

have

G(u+ u′, u+ u′) = G(u, u) +G(u′, u′).

According to [2], the only monotonic
solution to this equation is a linear func-
tion. Thus, the function f = exp(F ) =
exp(G − c) = exp(−c) · exp(G) has the
desired form. The proposition is proven.
Relation to Hurwicz approach to
decision making under interval un-
certainty. The above formula has the
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form exp(β ·(αH ·u+(1−αH)·u)), where

β
def
= β + β and αH

def
= β/β.

Thus, it is equivalent to using the
non-interval formula with

u = αH · u+ (1− αH) · u.

This is exactly the utility equivalent
to an interval proposed by a Nobelist
Leo Hurwicz; see, e.g., [4, 6, 7].

Relation to maximum entropy.
This formula corresponds to maximiz-

ing entropy under the constraint that
the expected value of the Hurwicz com-
bination u = αH · u+ (1− αH) · u takes
a given value.
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