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Abstract

Nearly two decades ago, prominent statistician Leo Breiman wrote an

influential paper titled“Statistical Modeling: The Two Cultures” [17]

where he presented fundamental ideas of generative models (statisti-

cal) and algorithmic model in studying complex datasets. Breiman

urged statisticians to adopt a more diverse set of tools for data mod-

eling. As of 2019, the algorithmic model has witnessed a rapid devel-

opment for more than 20 years and this trend will be continuing for

years to come. Nowadays, it is usually referred to as machine learn-

ing, or in particular, neural network, deep learning etcetera. The

good news is that with substantial investments from leading tech-

nology companies like Google, Facebook, Uber, the Breiman’s goal

of diversifying data modeling tools can be pushed forward even fur-

ther: the infrastructure now supports getting the best of the two

worlds, namely, researchers, practitioners are able to flexibly incor-

porate various components of both generative model and algorithmic

model into a hybrid framework which allows to prioritize between

predictive power or interpretability of the models.

In this paper, first, the two cultures are briefly surveyed. Second,

basic ideas of integration techniques are discussed together with sup-

porting programming languages. Third, some exemplary implemen-

tations of integration with concrete applications are presented. Fi-

nally, certain recent relevant work in business and finance are intro-

duced.
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1 INTRODUCTION

In the year 2001, renowned statis-
tician Leo Breiman wrote the sort of
“provocative” article [17] in Statistical
Science claiming

There are two cultures in
the use of statistical mod-
eling to reach conclusions
from data. One assumes
that the data are generated
by a given stochastic data
model. The other uses al-
gorithmic models and treats
the data mechanism as un-
known.

He went on with

The statistical commu-
nity has been committed to
the almost exclusive use of
data models. This commit-
ment has led to irrelevant
theory, questionable conclu-
sions, and has kept statis-
ticians from working on a
large range of interesting
current problems. Algorith-
mic modeling, both in the-
ory and practice, has devel-
oped rapidly in fields out-
side statistics. It can be
used both on large complex
data sets and as a more ac-
curate and informative al-
ternative to data modeling
on smaller data sets. If our
goal as a field is to use data
to solve problems, then we
need to move away from ex-
clusive dependence on data

models and adopt a more di-
verse set of tools.

It has been almost twenty years
since then and the statistical commu-
nity has, to some extent, accepted the
data science and machine learning rev-
olution that Breiman referred to as the
algorithmic modeling cultures. Eventu-
ally, all researchers, as well as practi-
tioners, would like to use data to solve
meaningful problems. The amount of
data nowadays is hundreds of times
larger than twenty years ago. Besides,
data come from numerous new sources
with far greater complexities. The con-
temporary situation strongly validates
Breiman’s arguments.

In contrast, as machine learning’s
applications extend beyond traditional
fields like computer vision, text process-
ing or robotics, there has been an in-
creasingly greater demand for effective
methods for decision making under un-
certainties. Economic, business and fi-
nancial practitioners are particular in-
terested in capturing and representing
uncertainties because a large number of
decisions are high-stakes and usually in-
volve a lot of stake-holders. In other
words, risks are primary concerns; they
have to be classified and estimated for
any solution to be accepted.

In a recent review [4] (on page 687),
Athey et al. stress

The ML techniques often
require careful tuning and
adaptation to effectively ad-
dress the specific problems
that economists are inter-
ested in. Perhaps the most
important type of adapta-
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tion is to exploit the struc-
ture of the problems, e.g.,
the causal nature of many
estimands; the endogeneity
of variables; the configura-
tion of data such as panel
data; the nature of discrete
choice among a set of sub-
stitutable products; or the
presence of credible restric-
tions motivated by economic
theory, such as monotonic-
ity of demand in prices or
other shape restrictions.

Sections 2 and 3 contain brief re-
views of the main ideas of statistical
modeling and machine learning. In
section 4, we first present the reasons
why an integration of the two model-
ing approaches are necessary for mod-
ern research. Next, we quickly go over
some frameworks as well as program-
ming platforms having been developed
recently to address the need. The pa-
per concludes with Section 5 containing
a few applications in finance and bank-
ing.

2 STATISTICAL MODELING

Statistical modeling in the context
of business and finance is studied under
the name of econometrics (see [2], [35]
and [64] for some leading textbooks).
The common theme is to specify a tar-
get, an estimand which is a function of
a joint distribution of the data. The
data are typically some sets of vari-
ables (which usually include both cate-
gorical and quantitative variables). The
target is then one parameter of a sta-
tistical model that describes the (con-

ditional/unconditional) distribution of
the data. The statistical model is often
specified by a set of parameters which
will be estimated from a random sample
of the population by selecting the pa-
rameter values that best fit the full sam-
ple, using an objective function such as
sum of squared errors or the likelihood
function. The emphasis is placed on the
quality of the estimators of the target,
classically measured through the large
sample efficiency. Researchers usually
find point estimates and confidence in-
tervals in terms of standard errors.

One example is the ordinary least
square covered in any econometric book
where an outcome Yi is modeled condi-
tioned on some regressor Xi. Suppose
we know that

Yi|Xi ∼ N(α + βTXi, σ
2)

There are two parameters θ = (α, β)
to be estimated. Without much expla-
nation, a least squared error is used, i.e.

(α̂, β̂) = argminα,β

N∑
i=1

(Yi − α− βTXi)
2

If the model is correct, the least-
square estimator is essentially the best
estimator with all proven excellent
properties like unbiasedness, consis-
tency, i.e. best linear unbiased estima-
tor (BLUE). In addition, it is also the
maximal likelihood estimator and it has
large sample efficiency properties. Some
textbooks, for instance [2], barely men-
tion the model building step assuming
data to be in a good shape for methods
like OLS. This might be the case in the
past, but, certainly not the case today.

Statistical modeling, especially the
bayesian framework, is, however, very
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strong on expressing uncertainties. In
many circumstances, it offers valuable
insights, and in some cases, causality ex-
planations for the phenomena of inter-
est. This is where the algorithmic mod-
eling approach is originally not designed
for and where statistics complements al-
gorithms effectively. Subsequent sec-
tions will clarify the point.

3 MACHINE LEARNING

In constrast to section 2, machine
learning originates from computer sci-
ence, thus, is all about designing algo-
rithms (see [65] for a widely cited text-
book). The ultimate goal is to make
predictions about some target variables
given other observed variables (usu-
ally called features). The predictions
can be continuous (such as determin-
ing price, remaining useful life or cus-
tomer lifetime value and so on) or dis-
crete (such as classification of handwrit-
ten digits, customer churn, fraud detec-
tion etcetera). One common scenario is
where the available information is noisy
as well as limited, which means feature
engineering (constructions of new vari-
ables) is required, since the raw data is
by itself not enough to produce satisfac-
tory results.

One of the difficulties for statisti-
cians and econometricians in reading
machine learning literature is new ter-
minology. Instead of model being esti-
mated, it is being trained. Well-known
statistical terminology such as regres-
sors, covariates, predictors are referred
to as features. Unlike econometrics,
model assumptions are not big concerns
(at least in practice). Traditionally, ma-

chine learning has two major branches:
supervised learning and unsupervised
learning.

In supervised learning, data come
with labels. In other words, we know
the ground truth, for instance, in the
customer churn problem, there are char-
acteristics of a customer such as number
of transactions, total values of transac-
tions and so on, and the ground truth
is whether she or he leaves the ser-
vice/business or not (see [38] for more
details). Another example is stock
price prediction (back testing), features
(characteristics) of a particular stock
include past stock prices (before cur-
rent date), past financial reports, head-
lines/news related to the ticker symbol
etc., and the ground truth is the today
price, that is, assuming stock informa-
tion up to the previous day, we predict
the stock price of today (see [23], [54] for
comprehensive reviews of techniques).
The former example is an instance of
the classification problem and the latter
is an instance of the regression problem.

In unsupervised machine learning,
the goal is to understand the structures
of data. A great number of data contain
intrinsic structures, for instance, images
are not arbitrary collections of pixels,
but are composed of objects like hu-
mans, animals, landscapes etc, and time
series or any temporal data contain dy-
namics or dependencies, not just ran-
dom ups and downs. For an overview of
unsupervised machine learning, see [29].
One classical problem in this areas is
clustering where we try to group data
into clusters sharing important charac-
teristics. For clustering algorithm re-
views, see [42], [48], [26], [66]. For appli-
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cations of clustering, see [61], [45]. An-
other increasingly important problem in
unsupervised learning is data represen-
tation. Actually, in one way or another,
this problem has been studied long be-
fore the term “unsupervised learning”
was invented. For example, in busi-
ness and finance, there are a wide va-
riety of categorical variables which need
to be converted into some sort of nu-
meric values in order to be fed into
models. Straightforwardly, in econo-
metrics, dummy variables, and in ma-
chine learning, one hot encoding are
used for this purpose. Classical encod-
ing methods suffer from many short-
comings, not to mention the inability
to be used in many other situations
such as encoding sentences, paragraphs
and documents in natural languages.
Therefore, there is a great demand for
new representation methods. It should
be emphasized that not only categori-
cal variables but also numeric variables
need representations. Dimensionality
reduction has been studied for a very
long time with algorithms like princi-
pal component analysis (PCA) etc. A
wide range of modern algorithms have
been invented to introduce nonlinear-
ity and other properties which PCA and
other earlier algorithms cannot capture.
For example, autoencoders based on ar-
tificial neural network represent data
much more flexibly, see [16], [32], [52]
and [58]. Besides, better representa-
tions have been researched for lots of
other purposes, see [34], [22], [3].

One very popular machine learn-
ing technique in the last ten years is
artificial neural network (ANN). This
is actually composed of a vast num-

ber of different algorithms solving a
wide range of problems with applica-
tions from robotics, automatic driven
cars to marketing, management and fi-
nance. In a nutshell, neural networks
are tunable nonlinear functions with
many parameters.

Parameters θ of a neural network are
called weights of the network. The out-
put y is modeled as a nonlinear function
of weights θ and inputs x

p(yn = 1|x(n), θ) = σ
(∑

i

θix
(n)
i

)
(1)

where σ is an activation function which
introduces nonlinearity to the model.

Multi-layered neural network can be
thought of as a composition of functions
(which are called layers)

y(n) =
∑
j

θ
(2)
j σ
(∑

i

θ
(1)
ji x

(n)
i

)
+ ε(n)

(2)
Estimations of parameters are then

computed by optimizing some variant
of the gradient descent algorithm. The
process is called training and usually
corresponds to maximizing likelihood or
penalized likelihood of the parameters.

The following formula summarizes
basic ANN

ANN = nonlinear function + basic
statistics + basic optimization

Recently, Deep learning (DL) has
been mentioned so frequently. In short,
it is a very large ANN with many ar-
chitectural and algorithmic innovations.
Usually, DL contains many layers, has
various choices for the activation func-
tions σ (RELU, softmax etc.), include
some new tricks like dropout and so
on. The major differences between a
DL and a classical ANN include vastly
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Fig. 1 Source: [30]

larger datasets, vastly larger compu-
tational resources (graphical process-
ing unit-GPU, cloud), much better sup-
ports and tools from technology compa-
nies (Torch, Tensorflow), not to men-
tion hugely increased business invest-
ment and media hype. For more in-
formation, see the article [46] and the
book [33].

4 TWO CULTURES ARE MERGING

Statistics is more concerned about
causality, interpretability while machine
learning is more concerned about pre-
diction. There has been much effort
lately to obtain the best of the two
worlds with contributions from many
branches of science, not solely from sta-
tistical and artificial intelligence com-
munity. One example is the four consec-
utive workshops in bayesian deep learn-
ing (from 2016 to 2019) organized by
one of the most important conference
in machine learning, NeurIPS (Confer-
ence on Neural Information Processing
Systems) to bring together scientists in
every place working on the intersection
of the two fields. In addition to com-
plementing each other, machine learn-
ing and statistics indeed need to be in-

tegrated to tackle extremely important
problems. In a lot of high-stakes de-
cision making situations such as medi-
cal diagnosis or autonomous driven ve-
hicles, caturing and reporting predictive
uncertainty is essential since there is no
single best model and a mistake can be
a matter of life and death. Let us re-
call that predictive uncertainty consists
primarily of:

1. Aleatoric uncertainty: comes
from noisy data. For example, our
observed labels might be noisy,
maybe, as a result of measurement
imprecision or human errors etc.
This type of uncertainty is not re-
ducible even when more data ar-
rive.

2. Epistemic uncertainty: usually
comes in two kinds:

(a) structure uncertainty or
model selection uncertainty:
we do not know which model
structure should be con-
structed, or more generally,
what type of models is good
to interpolate/extrapolate.

(b) uncertainty in model param-
eters that best explain the
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observed data: we do not
know whether parameters
that fit the current observed
data will predict/generalize
well with respect to unob-
served data coming in the fu-
ture.

3. Distribution shift: In [51], dataset
shift is defined as a situation
where the joint distribution of in-
puts and outputs differs between
the training and test stages. This
situation arises when the environ-
ment is non-stationary (i.e. the
environment changes between the
time to train models and the time
to use models to predict). This
is ubiquitous, especially in busi-
ness and finance since markets are
inherently non-stationary; condi-
tions can change extremely fast
(due to new policies, unforeseen
disasters, human behaviors and
so on). Distribution shift can
be further classified into covari-
ate shift (change in the distri-
butions of independent variables),
prior probability shift (change in
the target variable) and concept
shift (change in the relationships
between the independent and the
target variables).

For the former two uncertainties, see
[30], [27] for an overview. For distribu-
tion shift, see the book [51] for a com-
prehensive introduction.

In order to incorporate uncertain-
ties, probability framework is needed
in machine learning. To put it briefly,
it can be thought as inferring plausi-
ble models to explain observed data. A

machine is then used to make predic-
tions about future data, and take deci-
sions that are rational given these pre-
dictions. It should be emphasized that
since data can be consistent with more
than one model, there may not exist a
single best model for future data pre-
diction as well as future data decision
making. For more information, see the
classic texts [19], [8].

A straightforward approach is to al-
low uncertainties in the weights of the
artificial neural network. In formula
(2), a vanilla ANN is determined by
its weights θ’s which are constants af-
ter training. In a bayesian neural net-
work (BNN), the weights θ’s are ran-
dom variables with some prior distri-
butions. The bayesian inference frame-
work is employed in training process
to obtain posterior distributions for pa-
rameters θ’s. Unfortunately, construct-
ing posterior distributions for θ’s is
usually intractable. Even obtaining a
posterior sample via a Markov Chain
Monte Carlo (MCMC) usually takes a
very long time for the algorithm to con-
verge. This is the place where varia-
tional inference comes in handy. Start-
ing with a pre-specified family of prob-
ability distributions, posterior distribu-
tions are approximated by a member
of the family which is “closest” (small-
est distance) to the true distribution.
The distance is normally the Kullback-
Leibler divergence (KL divergence or
relative entropy) which is a similarity
measure between two probability dis-
tributions. Minimizing the KL diver-
gence is equivalent to minimizing the
evidence lower bound (ELBO). ELBO
can be considered as a loss function that
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can be optimized by a back propagation
algorithm in machine learning. This ex-
plains how bayesian statistics benefits
from machine learning. For more infor-
mation on variational inference, see [15],
[62] and [63]. Note that to reduce the
computational complexity of the train-
ing process, not all layers of the neural
network need to be stochastic (weights
are random variables), some layers can
be deterministic (weights are constant),
see [59] for information on how to in-
sert stochastic layers to common archi-
tectures.

Since probabilistic model develop-
ment and the derivation of inference al-
gorithms is time-consuming and error-
prone, there has been a lot of work
on developing probabilistic programming
languages (PPL) for expressing prob-
abilistic models as computer programs
that generate data. The ultimate goal
is to derive universal inference engines
for these languages that do inference
over program traces given observed data
(in other words, Bayes rule on com-
puter programs). A wide variety of such
languages have been developed such
as BUGS, Infer.NET, BLOG, STAN,
Church etc. A great deal of progress
has been made with implementations
of inference algorithms like Metropolis-
Hastings, variational inference, particle
filtering, slice sampling etc. For an
overview, see Figure 2 and articles [14],
[24]. For a comprehensive discussions,
see dissertation [40].

Since around the year 2015, ma-
jor technology companies like Google,
Facebook and Uber have invested heav-
ily on developing platforms for proba-
bilistic programming with the final goal

to deploy it into business applications.
Google has created new API called ten-
sorflow probability to integrate proba-
bilistic modeling into its artificial intel-
ligence platform tensorflow. Together
with a complete platform, Google offers
the a new probabilistic language named
Edward as an inherent part of the pack-
age. Not lagging behind are Facebook
and Uber whose joint effort results in
the probabilistic language Pyro inte-
grated into Facebook artificial intelli-
gence package Torch. For this line of
research, see [10], [60], [57] and [13].

In addition to expressing all types of
uncertainties in machine learning, the
bayesian framework can also be used
to find global optimum for an uncer-
tain function f , meaning there is no
closed form formula for the objective
f . The only thing possible is eval-
uating f (with error) at some par-
ticular input x. Finding global op-
timum is posed as a sequential deci-
sion theory problem: suppose after hav-
ing evaluated at three points, measur-
ing the values of f at those points,
[(x1, f(x1)), (x2, f(x2)), (x3, f(x3))],
which point x should the algorithm eval-
uate next, and where does it believe the
maximum/minimum to be ? This has
long been studied in machine learning
with applications ranging from drug de-
sign to robotics, to any problem involv-
ing the optimization of expensive func-
tions (i.e. require substantial computa-
tional resources). See [55], [56] for more
details.

For a relative new direction of re-
search, let us explore the impact of ma-
chine learning on economics and econo-
metrics. In 2019, the American Eco-
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Fig. 2 Probabilistic Programming

nomic Association (AEA) has orga-
nized a course on machine learning and
econometrics to educate and encourage
economists, especially econometricians
to adopt machine learning and data sci-
ence. This can be seen as an effort of
AEA just like that of Leo Breiman in
2001 (see [17]) to convince statisticians
to bring algorithmic modeling into their
work. The content (with numerous ex-
tensions) of the activities above is pub-
lished in [5], [4] and [6]. In the annual
review of economics in 2019 for AEA,
Athey et al. have compared and con-
strasted the goals and methodologies of
machine learning and economics. The
highlight is that the adoptions should
go in both directions. On the one hand,
there are insights that machine learning
might miss when focusing everything on
predictive ability. On the other hand, in
order to take full advantage of the avail-
ability of all sort of data, some of which
have not been utilized effectively by
economists before, economists should
accept machine learning and data sci-
ence as one of their standard meth-
ods. In fact, experts from both sides
have worked diligently to combine the

two methodologies to tackle many im-
portant problems, especially where deep
insights into the phenomena (such as
causality) are needed.

5 SOME APPLICATIONS IN
FINANCE AND BANKING

Traditionally, statistics, in particu-
lar econometrics, has been used exten-
sively for many decades. In the past, it
is relatively successful in providing pre-
dictions and certain insights into finan-
cial markets as well as assisting bank-
ing operations. However, recently, with
the incorporation of technology into ev-
ery sector of any economy, the financial
and banking services have been evolv-
ing at unprecedented speed, thus, cre-
ate great demands for novel techniques,
novel tools both for predictive analytics
and for understanding of the intrinsic
dynamics of the industries.

Our first example is the classical as-
set pricing problem in finance. Ear-
lier approaches include stochastic dif-
ferential equations and probability the-
ory, see [7], [41], [47]. When the world
economy was not highly connected and
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markets were not linked closely, these
methods proved to be adequate for ba-
sic understanding of the pricing pro-
cess. Nevertheless, modern economies
are so inter-connected that a change
in one place can have impacts world-
wide; hence, market dynamics are a
lot more complex and harder to un-
derstand. That is to say new ideas
and new technology are required to cap-
ture subtle information undetected by
econometrics and other traditional tech-
niques. In [37], Gu et al. utilize the
feature engineering procedure in data
science to construct new latent factors
which are combinations (can be both
linear and non-linear) of asset char-
acteristics. To be more precise, the
authors provide estimates of nonlinear
conditional exposures and the associ-
ated latent factors. The workhorse
is a polpular dimensionality reduction
tool in machine learning, namely au-
toencoder neural network. Besides a
smaller out-of-sample errors compared
to other factor models, the machine
learning framework allows the imple-
mentation of the economic restriction of
no-arbitrage. See [21], [36], [43] for more
work along this line of research.

The second example is the forecast
problem in financial markets. Stock
markets attract a great deal of attention
around the world. Not only researchers
but also investors relentlessly seek new
methods to stay ahead in the forecast-
ing game. State-of-the-art economet-
rics and machine learning are employed
with the deployments of large infras-
tructure to gain advantages in this area.
Early adoptions of machine learning al-
gorithms are in [25], [39] and [9] where

classical architectures like multi-layer
perception are experimented with some
successes. These efforts are further in-
vestigated in [53] and [28], especially in
[28] with all cutting-edge sequence ma-
chine learning models such as recurrent
neural network, long-short-term net-
work (LSTM) and convolutional neu-
ral network (CNN). See [54] for a most
recent review. As for the Vietnamese
stock markets, the work in [49], [50] con-
siders bayesian average techniques in a
novel hybrid model to better predict the
market stock indices.

The third example comes from bank-
ing industry. Chakraborty et al. in
[18] give a review of machine learning
in the context of central banking and
policy analyses. Policy analysis is cus-
tomarily built around causal inference
where causality is obtained by compar-
ing the effect of policy with a random-
ized control group. Actually, a pol-
icy problem in the twenty-first century
can be divided into a prediction and
a causal inference component. In this
sense, machine learning and economet-
rics can be seen as mutual extensions of
each other where econometrics has de-
veloped elaborate tools like instrumen-
tal variables, regression discontinuity,
difference-in-difference analysis etcetera
for causal inference while machine learn-
ing is all about prediction with correla-
tions between variables. More interac-
tions in banking industry can be seen
in [1], [12], [13], [44].
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6 AN APPLICATION WITH THE
VIETNAMESE STOCK MARKET

In order to illustrate the benefits of
integrating techniques from the two cul-
tures, we consider a problem of fore-
casting market index in the Vietnamese
stock market, in this case, the VN30
index. The data are obtained from
January 5th, 2015 to February 21st,
2020. Besides the index itself, we collect
close prices from the same period for
the top three companies, namely Vin-
group (VIC), Vietcombank (VCB) and
Vinamilk (VNM). These three stocks
serve as signals to help predict the VN30
index, in other words, they are covari-
ates in the time-dependent linear regres-
sion with response variable VN30. For
the historical index data, we use a time
series decomposition into a local linear
trend component, a seasonality compo-
nent and a simple autoregressive with
lag 1 component. The framework is the
bayesian multivariable time series. All
codes are written in Python with the
Google tensorflow probability platform.

Traditionally, certain Monte Carlo
Markov Chain (MCMC) algorithm will
be employed to generate samples for
the posterior distributions of the model
parameters. For comparison, we have
tried the Hamiltonian Monte Carlo
(HMC) (see [11]), one of the state-of-
the-art algorithms in the MCMC fam-
ily. However, it takes so long to run; we
cannot get the parameters to converge
although HMC has been running on a
Google colab virtual machine stronger
than any personal computer. There-
fore, we are obliged to switch to the ma-
chine learning framework using varia-

tional inference instead of random walk
like the HMC. The advantage is that
minimizing the Kullback-Leibler diver-
gence (KL divergence or relative en-
tropy) in variational inference is equiv-
alent to maximizing the Evidence lower
bound (ELBO) (see [67]) which is a loss
function that can be optimized by some
backpropagation algorithm in machine
learning (see [20]). The time needed to
finish the training process is under 30
minutes, so the algorithm has the ability
to scale up to much larger size problem
than the current experiment.

Figure 3 contains the density plots
for the posterior parameters. In this
study, the sample size for each param-
eter is 2000. The samples are used to
generate the plots as well as to construct
the forecast distribution for the VN30
index. The forecast horizon (number of
days to forecast into the future) is 12
days.

Figure 4 consists of the density fore-
casts for the VN30 index for every 12
days into the future. The vertical red
line in each graph is the true index value
from the test set (12 last days in our
dataset). As can be observed in Figure
4, the maximum a posterior probability
(MAP) estimate is a pretty good esti-
mate in these forecasts with the average
root mean square errors for the 12 days
being around 27 points, approximately
3% of the true daily index value.

For uncertainty evaluation, natu-
rally, the standard errors increase from
day 1 to day 12 as shown in the plots.
Note that there are plenty of rooms for
improvements in this regard. In subse-
quent papers, we will explore and de-
velop mixtures of techniques which cap-
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Fig. 3 Posterior Parameter Densities

Fig. 4 Forecast Densities for 12 days

ture uncertainties much better, and in
general, produce better predictions.

7 CONCLUSION

In this paper, we have had a look
back at the influential paper on the two
cultures of Breiman in 2001. It can be
said that Breiman’s ideas stand the test
of time and we are still in the process of

realizing his brilliant vision. With con-
tributions from a great number of sci-
entists from all branches of science and
the significant investments from large
enterprises, the two modelings, the two
cultures, will integrate more and more
intensively hereinafter, generating re-
markable products in every place. Fur-
thermore, the amount of data contin-
ues to grow exponentially, and it is in-
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creasingly harder and harder to find any
industry or any branch of science that
does not have a demand for utilizing
data analysis and data science. Ubiqui-
tous applications bring novel challenges
which can be dealt with effectively if sci-
entists from different cultures, with dif-

ferent expertise, join effort together to
tackle.
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