TẠP CHÍ KHOA HỌC & CÔNG NGHỆ ĐẠI HỌC DUY TÂNDTU Journal of Science and Technology5(48) (2021) 88-92

Weak two-scale convergence in L^2 for a two-dimensional case

Hội tụ hai-kích thước yếu trong L^2 cho một trường hợp hai chiều

Tina Mai^{*a,b,**}

Mai Ti Na^{*a,b,**}

^aInstitute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam ^bFaculty of Natural Sciences, Duy Tan University, Da Nang, 550000, Vietnam

^aViện Nghiên cứu và Phát triển Công nghệ Cao, Trường Đại học Duy Tân, Đà Nẵng, Việt Nam ^bKhoa Khoa học Tự nhiên, Trường Đại học Duy Tân, Đà Nẵng, Việt Nam

(Ngày nhận bài: 16/06/2021, ngày phản biện xong: 19/06/2021, ngày chấp nhận đăng: 20/10/2021)

Abstract

In this paper, we present definitions and some properties of the weak two-scale convergence (introduced by Nguetseng in 1989) for component-wise vector or matrix functions within a two-dimensional case.

Keywords: two-scale homogenization; weak two-scale convergence; two-dimensional

Tóm tắt

Trong bài báo này, chúng tôi trình bày các định nghĩa và một số tính chất của hội tụ hai-kích thước yếu (được giới thiệu bởi Nguetseng vào năm 1989) cho các hàm vecto hoặc ma trận trong một trường hợp hai chiều.

Từ khóa: đồng nhất hóa hai-kích thước; hội tụ hai-kích thước yếu; hai chiều

1. Introduction

Let us consider in dimension two, a bounded reference domain $\Omega = \Omega^1 \times \Omega^2 \in \mathbb{R} \times \mathbb{R}$ and a variable $\mathbf{x} = (x^1, x^2) \in \Omega$. Within two-scale homogenization theory, when it is not possible to calculate limit in terms of the usual weak limit, it can be possible in terms of two-scale limit introduced in 1989 by Nguetseng [1]. In this spirit, we first present a brief review of the usual weak convergence in $L^2(\Omega)$ then the definitions and properties of the weak two-scale convergence for component-wise vector or matrix functions [2, 3, 4, 5], in a two-dimensional case.

2. Preliminaries

Latin indices vary in the set {1,2}. The space of functions, vector fields in \mathbb{R}^2 , and 2 × 2 matrix fields, defined over Ω are respectively denoted by italic capitals (e.g. $L^2(\Omega)$), boldface Roman capitals (e.g. V), and special Roman capitals (e.g. \mathbb{S}).

Throughout the study, we use the following list of notations [2]:

• $Y := [0, 1]^2$ is the reference periodic cell.

^{*} Corresponding Author: Tina Mai; Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam; Faculty of Natural Sciences, Duy Tan University, Da Nang, 550000, Vietnam; Email: maitina@duytan.edu.vn

- C₀(Ω) is the space of functions that vanish at infinity.
- We denote by C[∞]_{per}(Y) the Y-periodic C[∞] vector-valued functions in ℝ². Here, Y-periodic means 1-periodic in each variable yⁱ, i = 1,2.
- $H_{per}^1(Y)$, as the closure for the H^1 -norm of $C_{per}^{\infty}(Y)$, is the space of vector-valued functions $\boldsymbol{v} \in L^2(Y)$ such that $\boldsymbol{v}(y)$ is *Y*periodic in \mathbb{R}^2 .

$$\langle \boldsymbol{v} \rangle_{\boldsymbol{y}} = \frac{1}{|\boldsymbol{Y}|} \int_{\boldsymbol{Y}} \boldsymbol{v}(\boldsymbol{y}) \, \mathrm{d} \boldsymbol{y}.$$

$$\boldsymbol{H}_{\mathrm{per}}(Y) := \{ \boldsymbol{v} \in \boldsymbol{H}_{\mathrm{per}}^{1}(Y) \mid \langle \boldsymbol{v} \rangle_{\gamma} = 0 \}.$$

- We write
 • for the canonical inner products in ℝ² and ℝ^{2×2}, respectively.
- ≤ means ≤ up to a multiplicative constant that only depends on Ω when appropriate.

The Sobolev norm $\|\cdot\|_{W_0^{1,2}(\Omega)}$ is of the form

$$\|\boldsymbol{v}\|_{\boldsymbol{W}_{0}^{1,2}(\Omega)} = (\|\boldsymbol{v}\|_{\boldsymbol{L}^{2}(\Omega)}^{2} + \|\nabla\boldsymbol{v}\|_{\mathbb{L}^{2}(\Omega)}^{2})^{\frac{1}{2}};$$

here, $\|\boldsymbol{v}\|_{L^{2}(\Omega)} := \||\boldsymbol{v}\|\|_{L^{2}(\Omega)}$, where $|\boldsymbol{v}|$ denotes the Euclidean norm of the 2-component vectorvalued function \boldsymbol{v} , and $\|\nabla \boldsymbol{v}\|_{\mathbb{L}^{2}(\Omega)} := \||\nabla \boldsymbol{v}\|\|_{\mathbb{L}^{2}(\Omega)}$, where $|\nabla \boldsymbol{v}|$ denotes the Frobenius norm of the 2×2 matrix $\nabla \boldsymbol{v}$. We recall that the Frobenius norm on $\mathbb{L}^{2}(\Omega)$ is defined by $|\boldsymbol{X}|^{2} := \boldsymbol{X} \cdot \boldsymbol{X} =$ tr $(\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X})$.

Let ϵ be a natural small scale. For prospective applications in homogenization, based on [6, 7, 8, 9], we consider $u_{\epsilon}(x) \in W_0^{1,2}(\Omega)$ depending only on x^1 , that is, $u_{\epsilon}(x) = u_{\epsilon}(x^1)$, with boundary conditions of Neumann type. As noticed in [10], we do not discriminate a function on \mathbb{R} from its extension to \mathbb{R}^2 as a function of the first variable only. We assume that $u_{\epsilon}(x^1) = u\left(\frac{x^1}{\epsilon}\right)$ is a periodic function in x^1 with

period ϵ , equivalently, $u\left(\frac{x^1}{\epsilon}\right) = u(y^1)$ is a periodic function in y^1 with period 1. It means that for any integer k,

$$\boldsymbol{u}_{\varepsilon}(x^{1}) = \boldsymbol{u}_{\varepsilon}(x^{1} + \varepsilon) = \boldsymbol{u}_{\varepsilon}(x^{1} + k\varepsilon)$$

equivalently,

$$\boldsymbol{u}\left(\frac{x^1}{\epsilon}\right) = \boldsymbol{u}\left(\frac{x^1}{\epsilon} + 1\right) = \boldsymbol{u}\left(\frac{x^1}{\epsilon} + k1\right) = \boldsymbol{u}(y^1 + k).$$

3. Weak convergence

We describe the basic notions of the theory of two-scale convergence (thanks to [4, 5]). Twoscale convergence here can be viewed as a generalized version of the usual weak convergence in the Hilbert space $L^2(\Omega)$, which is defined as follows [4].

Let us consider a sequence of functions $u_{\epsilon} \in L^2(\Omega)$. By definition, (u_{ϵ}) is bounded in $L^2(\Omega)$ if

$$\limsup_{\epsilon \to 0} \int_{\Omega} |\boldsymbol{u}_{\epsilon}|^2 \, \mathrm{d} x \le c < \infty,$$

for some positive constant *c*.

We say that a sequence $(\boldsymbol{u}_{\epsilon}(\boldsymbol{x})) \in L^{2}(\Omega)$ is weakly convergent to $\boldsymbol{u}(\boldsymbol{x}) \in L^{2}(\Omega)$ as $\epsilon \to 0$, denoted by $\boldsymbol{u}_{\epsilon} \to \boldsymbol{u}$, if

$$\lim_{\varepsilon \to 0} \int_{\Omega} \boldsymbol{u}_{\varepsilon}(\boldsymbol{x}) \cdot \boldsymbol{\phi} \, \mathrm{d}\boldsymbol{x} = \int_{\Omega} \boldsymbol{u} \cdot \boldsymbol{\phi} \, \mathrm{d}\boldsymbol{x}, \qquad (1)$$

for any test function $\phi \in L^2(\Omega)$.

Moreover, a sequence (u_{ϵ}) in $L^{2}(\Omega)$ is defined to be strongly convergent to $u \in L^{2}(\Omega)$ as $\epsilon \to 0$, denoted by $u_{\epsilon} \to u$, if

$$\lim_{\epsilon \to 0} \int_{\Omega} \boldsymbol{u}_{\epsilon} \cdot \boldsymbol{v}_{\epsilon} \, \mathrm{d}\boldsymbol{x} = \int_{\Omega} \boldsymbol{u} \cdot \boldsymbol{v} \, \mathrm{d}\boldsymbol{x}, \qquad (2)$$

for every sequence $(\boldsymbol{v}_{\epsilon}) \in \boldsymbol{L}^{2}(\Omega)$ which is weakly convergent to $\boldsymbol{v} \in \boldsymbol{L}^{2}(\Omega)$.

We then have the following well-known weak convergence properties in $L^2(\Omega)$.

- (a) Any weakly convergent sequence is bounded in $L^2(\Omega)$.
- (b) Compactness principle: any bounded sequence in $L^2(\Omega)$ contains a weakly convergent subsequence.

- (c) If a sequence $(\boldsymbol{u}_{\varepsilon})$ is bounded in $L^{2}(\Omega)$ and (1) holds for all $\boldsymbol{\phi} \in C_{0}^{\infty}(\Omega)$, then $\boldsymbol{u}_{\varepsilon} \to \boldsymbol{u} \in L^{2}(\Omega)$.
- (d) If $u_{\epsilon} \rightarrow u \in L^{2}(\Omega)$ and $v_{\epsilon} \rightarrow v \in L^{2}(\Omega)$, then

$$\lim_{\epsilon \to 0} \int_{\Omega} \boldsymbol{u}_{\epsilon} \cdot \boldsymbol{v}_{\epsilon} \, \mathrm{d}\boldsymbol{x} = \int_{\Omega} \boldsymbol{u} \cdot \boldsymbol{v} \, \mathrm{d}\boldsymbol{x}$$

(e) Weak convergence of $(\boldsymbol{u}_{\epsilon})$ to \boldsymbol{u} in $L^{2}(\Omega)$ together with

$$\lim_{\epsilon \to 0} \int_{\Omega} |\boldsymbol{u}_{\epsilon}|^2 \, \mathrm{d}x = \int_{\Omega} |\boldsymbol{u}|^2 \, \mathrm{d}x$$

is equivalent to strong convergence of (u_{ϵ}) to u in $L^{2}(\Omega)$.

Throughout this paper, we denote by $Y = [0,1]^2$ the cell of periodicity. (In our case, a periodic cell has the form $Y = [0,1] \times [0,1]$.) The mean value of a 1-periodic function $\boldsymbol{\psi}(y^1)$ is denoted by $\langle \boldsymbol{\psi} \rangle$, that is,

$$\langle \boldsymbol{\psi} \rangle \equiv \int_{Y^1} \boldsymbol{\psi}(y^1) \, \mathrm{d} y^1$$

Recall that $y^1 = e^{-1}x^1$, and we do not distinguish between a function on Y^1 and its extension to Yas a function of the first variable only.

Also, here, the symbol $L^2(Y)$ works not only for functions defined on Y but also for the space of functions in $L^2(Y)$ extended by 1-periodicity to the whole of \mathbb{R}^2 . Similarly, $C_{per}^{\infty}(Y)$ denotes the space of infinitely differentiable 1-periodic functions on the whole \mathbb{R}^2 .

For later discussion, we introduce the following classical result.

Lemma 3.1 (The mean value property). Let $h(y^1)$ be a 1-periodic function on \mathbb{R} and $h \in L^2(Y^1)$. Then, for any bounded domain Ω , there holds the weak convergence

$$h\left(\frac{x^1}{\epsilon}\right) \rightarrow \langle h \rangle \ in \ L^2(\Omega) \ as \ \epsilon \rightarrow 0.$$
 (3)

Proof. The proof is based on property (c) and can be found in [4]. \Box

4. Weak two-scale convergence

As mentioned in [4], in homogenization theory, one often has to handle quantities of the form (for our case)

$$\lim_{\epsilon \to 0} \int_{\Omega} u_{\epsilon}(\boldsymbol{x}) \left(\phi(\boldsymbol{x}) h\left(\frac{x^{1}}{\epsilon}\right) \right) \mathrm{d}x,$$

where $u_{\epsilon} \rightarrow u, \phi \in C_0^{\infty}(\Omega)$ a scalar function, $h \in C_{\text{per}}^{\infty}(Y^1)$. In general, it is not possible to calculate this limit in terms of the usual weak limit u. However, it is possible in terms of the two-scale limit introduced in 1989 by Nguetseng [1]. In this spirit, we have the following definition of weak two-scale convergence in $L^2(\Omega)$ [2, 3].

Definition 4.1. Let (u_{ϵ}) be a bounded sequence in $L^{2}(\Omega)$. If there exist a subsequence, still denoted by u_{ϵ} , and a function $u(\mathbf{x}, y^{1}) \in L^{2}(\Omega \times Y^{1})$, where $Y^{1} = [0, 1]$ such that

$$\lim_{\epsilon \to 0} \int_{\Omega} u_{\epsilon}(\mathbf{x}) \left(\phi(\mathbf{x}) h\left(\frac{x^{1}}{\epsilon}\right) \right) dx$$

$$= \int_{\Omega \times Y^{1}} u(\mathbf{x}, y^{1}) (\phi(\mathbf{x}) h(y^{1})) dx dy^{1}$$
(4)

for any $\phi \in C_0^{\infty}(\Omega)$ and any $h \in C_{per}^{\infty}(Y^1)$, then such a sequence u_{ϵ} is said to weakly two-scale converge to $u(\mathbf{x}, y^1)$. This convergence is denoted by $u_{\epsilon}(\mathbf{x}) - u(\mathbf{x}, y^1)$.

For vector (or matrix) $\boldsymbol{u}_{\varepsilon}$, equation (4) implies

$$\lim_{\epsilon \to 0} \int_{\Omega} \boldsymbol{u}_{\epsilon}(\boldsymbol{x}) \cdot \boldsymbol{\Phi}\left(\boldsymbol{x}, \frac{x^{1}}{\epsilon}\right) dx$$

$$= \int_{\Omega \times Y^{1}} \boldsymbol{u}(\boldsymbol{x}, y^{1}) \cdot \boldsymbol{\Phi}(\boldsymbol{x}, y^{1}) dx dy^{1},$$
(5)

for every $\boldsymbol{\Phi} \in \boldsymbol{L}^2(\Omega; \boldsymbol{C}_{per}(Y^1))$, whose choice is explained in [11] (p. 8).

The Definition 4.1 makes sense because of the following compactness result, which was proved in [12] and first in [1].

Theorem 4.2. Any bounded sequence $u_{\epsilon} \in L^{2}(\Omega)$ contains a weakly two-scale convergent subsequence.

Proof. The proof is obtained as in [4] or [5] with the help of the mean value property (3). \Box

Remark 4.3. Regarding the class of test functions $\phi \in C_0^{\infty}(\Omega), h \in C_{per}^{\infty}(Y^1)$ in condition of (4), it can be extended (with the help of the density argument) to the class of test functions $\phi \in C_0^{\infty}(\Omega), h \in L^2(Y^1)$.

Consequently, the convergence $u_{\epsilon} \rightharpoonup u$ implies the convergence

$$u_{\epsilon}(\boldsymbol{x})b\left(\frac{x^{1}}{\epsilon}\right) \rightarrow u(\boldsymbol{x}, y^{1})b(y^{1}), \quad \forall \ b \in L^{\infty}(Y^{1}).$$
(6)

We now have the following lower semicontinuity property [4].

Lemma 4.4. If $u_{\epsilon}(\mathbf{x}) \rightarrow u(\mathbf{x}, y^1)$, then

$$\liminf_{\epsilon \to 0} \int_{\Omega} |u_{\epsilon}(\mathbf{x})|^2 \, \mathrm{d}\mathbf{x} \ge \int_{\Omega \times Y^1} |u(\mathbf{x}, y^1)|^2 \, \mathrm{d}\mathbf{x} \, \mathrm{d}y^1.$$
(7)

Proof. The proof can be found in [4] or [5]. Specifically, denote by \mathcal{D} a countable set of functions which is dense in $L^2(\Omega \times Y^1)$ and consists of finite sums of the form

$$\Phi(\mathbf{x}, y^1) = \sum \phi_j(\mathbf{x}) h_j(y^1), \qquad (8)$$

where $\phi_j \in C_0^{\infty}(\Omega)$, $h_j \in C_{\text{per}}^{\infty}(Y^1)$.

For any test function of the form (8), using Young's inequality, we have

$$2\int_{\Omega} u_{\epsilon}(\boldsymbol{x})\Phi\left(\boldsymbol{x},\frac{x^{1}}{\epsilon}\right) \mathrm{d}\boldsymbol{x} \leq \int_{\Omega} |u_{\epsilon}(\boldsymbol{x})|^{2} \,\mathrm{d}\boldsymbol{x}$$
$$+ \int_{\Omega} \left|\Phi\left(\boldsymbol{x},\frac{x^{1}}{\epsilon}\right)\right|^{2} \,\mathrm{d}\boldsymbol{x}.$$

Letting $\epsilon \to 0$, by definition of weak two-scale convergence and the mean value property, we get

$$\liminf_{\varepsilon \to 0} \int_{\Omega} |u_{\varepsilon}|^2 \mathrm{d}x \ge 2 \int_{\Omega \times Y^1} u(\mathbf{x}, y^1) \Phi(\mathbf{x}, y^1) \mathrm{d}x \mathrm{d}y^1$$
$$- \int_{\Omega \times Y^1} |\Phi(\mathbf{x}, y^1)|^2 \mathrm{d}x \mathrm{d}y^1.$$

Now, choosing a sequence $\Phi(\mathbf{x}, y^1) = \Phi_k(\mathbf{x}, y^1)$ such that $\Phi_k \to u(\mathbf{x}, y^1)$ in $L^2(\Omega \times Y^1)$ as $k \to \infty$, we obtain (7). Recall that a function $\Phi(\mathbf{x}, y^1)$ on $\Omega \times Y^1$ is said to be a *Carathéodory function* if it is continuous in $\mathbf{x} \in \Omega$ for almost all $y^1 \in Y^1$ and measurable in y^1 for any $\mathbf{x} \in \Omega$.

Now, we formulate an important result about the extension of the class of admissible functions in the original Definition 4.1. More details and proofs can be found in [11, 12, 13].

Lemma 4.5. Let $u_{\varepsilon} \rightarrow u(\mathbf{x}, y^1)$. If $\Phi(\mathbf{x}, y^1)$ is a Carathéodory function and $|\Phi(\mathbf{x}, y^1)| \leq \Phi_0(y^1), \Phi_0 \in L^2(Y^1)$, then

$$\lim_{\epsilon \to 0} \int_{\Omega} u_{\epsilon}(\boldsymbol{x}) \Phi\left(\boldsymbol{x}, \frac{\boldsymbol{x}^{1}}{\epsilon}\right) d\boldsymbol{x}$$

$$= \int_{\Omega \times Y^{1}} u(\boldsymbol{x}, y^{1}) \Phi(\boldsymbol{x}, y^{1}) d\boldsymbol{x} dy^{1}.$$
(9)

In particular, one can choose $\Phi(\mathbf{x}, y^1) = \phi(\mathbf{x})h(y^1), \phi \in C_0^{\infty}(\Omega), h \in L^2(Y^1)$.

References

- Gabriel Nguetseng. A general convergence result for a functional related to the theory of homogenization. *SIAM Journal on Mathematical Analysis*, 20(3):608– 623, 1989.
- [2] Mikhaila Cherdantsev, Kirillb Cherednichenko, and Stefan Neukamm. High contrast homogenisation in nonlinear elasticity under small loads. *Asymptotic Analysis*, 104(1-2), 2017.
- [3] Mustapha El Jarroudi. Homogenization of a nonlinear elastic fibre-reinforced composite: A second gradient nonlinear elastic material. *Journal of Mathematical Analysis and Applications*, 403(2):487 – 505, 2013.
- [4] V. V. Zhikov and G. A. Yosifian. Introduction to the theory of two-scale convergence. *Journal of Mathematical Sciences*, 197(3):325–357, Mar 2014.
- [5] Dag Lukkassen and Peter Wall. Two-scale convergence with respect to measures and homogenization of monotone operators. *Journal of function spaces and applications*, 3(2):125–161, 2005.
- [6] Hervé Le Dret. An example of H¹-unboundedness of solutions to strongly elliptic systems of partial differential equations in a laminated geometry. *Proceedings of the Royal Society of Edinburgh*, 105(1), 1987.
- [7] S. Nekhlaoui, A. Qaiss, M.O. Bensalah, and A. Lekhder. A new technique of laminated composites homogenization. *Adv. Theor. Appl. Mech.*, 3:253–261, 2010.
- [8] A. El Omri, A. Fennan, F. Sidoroff, and A. Hihi. Elastic-plastic homogenization for layered composites. *European Journal of Mechanics - A/Solids*, 19(4):585 – 601, 2000.

- [9] G. A. Pavliotis and A. M. Stuart. Multiscale methods: Averaging and homogenization, volume 53 of Texts in Applied Mathematics. Springer-Verlag New York, 2008.
- [10] Giuseppe Geymonat, Stefan Müller, and Nicolas Triantafyllidis. Homogenization of nonlinearly elastic materials, microscopic bifurcation and macroscopic loss of rank-one convexity. *Archive for Rational Mechanics and Analysis*, 122(3):231–290, 1993. DOI: 10.1007/BF00380256.
- [11] Dag Lukkassen, Gabriel Nguetseng, and Peter Wall. Two-scale convergence. *International journal of pure and applied mathematics*, 2(1):35–86, 2002.
- [12] Grégoire Allaire. Homogenization and two-scale convergence. *SIAM Journal on Mathematical Analysis*, 23(6):1482–1518, 1992.
- [13] V. V. Zhikov. On two-scale convergence. Journal of Mathematical Sciences, 120(3):1328–1352, Mar 2004.